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Abstract. The Tarim and Konqi Rivers in western China have experienced dramatic changes in
streamflow and riparian vegetation due to climatic variability, land cover change, and water man-
agement including interbasin water transfers. To assess the extent and evolution of vegetation
dynamics along these rivers, we use Landsat and MODIS images for land cover classification,
spectral mixture analysis, and landscape phenology analysis. From 1998 to 2011, agriculture
nearly tripled in extent, from 1376 to 3742 km2. Natural riparian vegetation persisted in aggre-
gate but experienced losses (to agriculture) in some areas while expanding into barren land else-
where. Spectral mixture analysis suggests that interbasin water transfers from the Konqi to the
Tarim River increased near-channel riparian vegetation on the Tarim at the expense of vegetation
on the Konqi. A time-series of MODIS images reveals a pattern of increasing and decreasing
greenness across the region, including loss of vegetation in distal regions that were formerly
subject to sporadic seasonal flooding but now are cut off from their water supply due to water
management. These results suggest that satellite remote sensing may play a valuable role in
monitoring the effects of changing land use and hydrology on riparian systems in Central
Asia and other arid regions. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.JRS.10.046020]
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1 Introduction

China’s arid western Xinjiang Uyghur Autonomous Region is experiencing rapid population
growth, economic development, and pressures from interannual- to decadal-scale climate vari-
ability superimposed on long-term anthropogenic climate change. All of these factors affect
water management and water security in multiple ways. At the same time, water management
decisions and concerns over water security contribute to an environment of conflict and com-
petition among stakeholders divided along ethnic, religious, economic, and administrative lines.

These processes are particularly evident in Southern Xinjiang, including the Tarim Basin.1

The Tarim is China’s longest internal river and is primarily sourced from precipitation in the
surrounding mountain ranges, including the Tian Shan, Pamir, and Kunlun, including past pre-
cipitation stored in montane glaciers. Beginning in the 1960s, the construction of dams and the
withdrawal of water from the river for agriculture, industry, and domestic consumption led to
a dramatic reduction in flow in the lower reaches of the river, as well as the disappearance of
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its terminal lake, Taitema. More recently in 2000, the government commenced an intermittent
series of within-basin and interbasin water transfers, with the ostensible objective of restoring
degraded riparian systems along the lower river.2 These transfers involved releases of water from
upstream reservoirs on the Tarim, as well as diversion of water from the Konqi River into the
Tarim River.

Researchers in the region have documented some of the effects of these changes over the past
decades, including the impacts of climate change and interannual variability on glaciers3,4 and
streamflow,1,5 the response of riparian ecosystems and groundwater to changes in streamflow,2,6–8

and the connections between population growth, economic development, land use, and water
management.9

Given the broad spatial scale of the Tarim and Konqi river systems, remote sensing provides a
valuable tool for more spatially expansive assessments of the nature and impacts of these
changes in land cover and water management, including their effects on downstream ecosystems
both proximal and distal to the rivers’ channels. Previous research in this region10 used moderate-
resolution (Landsat and SPOT) imagery to study land cover change trajectories for one township
in the Yuli oasis. Coarser-resolution imagery from SPOT-vegetation and Terra/Aqua MODIS has
also been employed11,12 to assess vegetation dynamics at broader scales within the Tarim Basin.

In this study, we expand on that prior research, using multiple complementary remote sensing
data sources and analytical methods synergistically to examine the ways the middle and lower
reaches of the Tarim River, the neighboring and interconnected Konqi River, and their surround-
ing landscapes have responded over the past decade to changing environmental conditions, land
use, and water management policies. The use of several distinct data sources and analytical
methods (land cover classification, spectral mixture analysis, and landscape phenology analysis)
should provide a more robust, nuanced, and reliable assessment than any one sensor and meth-
odology alone. Using these data, we seek to understand how ecosystem responses have differed
along multiple dimensions (upstream versus downstream, Tarim versus Konqi, and proximal
versus distal zones). Ultimately, we hope to provide guidance for local resource managers
and other stakeholders on the use of satellite remote sensing for assessing the rapid changes
in land use and vegetation cover across this region, and for evaluating the impacts of water
management policies, such as within-basin and interbasin water transfers.

Fig. 1 Map of the study area (yellow polygon) within the Tarim/Konqi Basin in western China.
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1.1 Study Region

The study region (∼79;000 km2 area) covers the lower reaches of the Tarim River, the neigh-
boring Konqi River, and their surrounding landscapes. These river systems are located at the
northern fringe of the Taklimakan Desert and the south slope of the Tian Shan range (elevations
exceeding 5000 m), largely defined by 83.2°E to 88.9°E and 39.5°N to 42.1°N (Fig. 1). As noted,
the construction of large dams and reservoirs from the 1960s onward led to decreased flow in
downstream sections of the Tarim River, such that the last 320 km of the river had been
completely dry for 30 years before the first water conveyances.2 Consequences of this drying
included a lowering of the water table, the loss of riparian vegetation, and concerns about the
windborne mobilization of previously stabilized desert soils. During this same period, the region
also experienced increased but highly variable warming, leading to large interannual fluctuations
in river discharge, complicating the water management process.13–15 Climate models replicate
this effect in hindcasting and project that it will likely continue over the 21st century.16 Within
the Tian Shan range, spatially varying trends in precipitation, snow cover, glacier mass balance,
and streamflow have been observed.3,5,17 Overall, in the past 20 years, the area witnessed increas-
ing runoff, likely due to both locally increased precipitation and progressive melting of mountain
glaciers in response to increasing temperature.

1.2 Water Conveyances in the Early 21st Century

Water management in the Tarim-Konqi region, as in most of Xinjiang, is intensive. In recent
years, a series of major water system engineering projects have been built in the region,
with additional future construction proposed. These artificial manipulations of the riparian envi-
ronment include dams for water storage and hydropower, canals and other irrigation-related
structures, roadways, industrial facilities, and hard engineering efforts such as channelization.
In the late 20th century, the government adopted a plan “ecological water conveyance on the
Tarim River” to ameliorate the acute water shortages of the Tarim River. Water was transferred to
the lower Tarim via releases from reservoirs on higher reaches of the Tarim River itself as well as
from the neighboring Konqi River. From 2000 to 2011, 12 “water conveyances” occurred
(Table 1), in most cases releasing enough water to reach all the way to the river’s end at
Taitema Lake.

Table 1 Twelve water conveyances on the Tarim River, Xinjiang, China.

Conveyance Start month End month
Transported water

(million m3)
Distance reached in
the Tarim River (km)

1 May 2000 June 2000 98 106

2 October 2000 February 2001 226 218

3 April 2001 November 2001 382 360 (reached Taitema Lake)

4 June 2002 November 2002 331 360 (reached Taitema Lake)

5 March 2003 November 2003 623 360 (reached Taitema Lake)

6 April 2004 June 2004 102 360 (reached Taitema Lake)

7 May 2005 October 2005 282 360 (reached Taitema Lake)

8 June 2006 November 2006 201 360 (reached Taitema Lake)

9 September 2007 October 2007 14 105

10 November 09 December 2009 11 115

11 June 2010 November 2010 390 360 (reached Taitema Lake)

12 January 2011 January 2011 36 360 (reached Taitema Lake)
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The conveyances were carried out ostensibly to restore degraded riparian ecosystems along
the lower Tarim. While there have been several studies of the effects of these transfers on the
lower Tarim,2,18 minimal attention has been paid to the broader impacts beyond the immediate
riparian zone of the lower reaches of the Tarim River. This has left unaddressed the question of
whether these water conveyances are merely transferring the environmental and social benefits of
water availability from less-visible areas to more-visible areas.

2 Methods

As noted in Sec. 1, several previous studies have used remote sensing methods to examine land
cover change in portions of the Tarim Basin. Until now, however, no broad-scale study in this
region has made use of the synergy between multiple sensors (Landsat and MODIS), analytical
approaches (spectral mixture analysis, rule-based classification, and landscape phenological
analysis), and comparisons across landscape units (upstream versus downstream, Tarim versus
Konqi Rivers, and proximal riparian zones versus distal areas). To best accomplish this, three
different approaches were used to analyze landscape change in the study region

a. Spectral classification of Landsat-5 and -7 images into land-use/land-cover categories.
b. Spectral mixture analysis of the same Landsat images, to determine the actual percent cover

of vegetation on a per-pixel basis.
c. Analysis of seasonal variability and long-term trends in 250-m spatial resolution MODIS

normalized difference vegetation index (NDVI) data.

Each of these approaches yielded information about the spatial extent and temporal changes
in agricultural lands and natural (unmanaged) plant communities. By comparing the results from
these three complementary analytical approaches, we sought to obtain a more complete, robust,
and convincing picture of land use/land cover change than could be provided by any one of the
methods on its own, and to shed light on the ecological impacts of the interbasin water transfers,
climate variability, and other factors driving riparian change in this region.

2.1 Landsat Image Preparation

Table 2 lists the Landsat images used for analyses (a) and (b). Because of the wide extent of the
study area, six images were required for each year. Five years (1998, 2000, 2007, 2009, and
2011) offered high-quality, cloud-free images during the summer season, although one portion
of the area had no cloud-free imagery in 1998 so an earlier image was used (Table 2). A majority
(77%) of the images were acquired in August and September, with the remainder as close to
this 2-month window as possible. For comparison, based on MODIS vegetation index data
(Sec. 2.4), the greenness of cotton fields in this region rises above background levels in early
April, reaches a peak in early July, and subsides back down to background levels in late
November. Unmanaged riparian vegetation has a weaker seasonal cycle in this area, but it
likewise has a peak in early July followed by a long, slow decline in greenness into late

Table 2 Landsat images in this study. Dates are in YYYY-MM-DD format for each path/row (P/R)
combination. No suitable cloud-free image was available for P142 R032 during summer 1998,
so a 1990 image was substituted.

Year P141/R032 P142/R032 P143/R031 P143/R032 P144/R031 P144/R032

1998 1998-09-06 1990-10-09 1998-09-04 1998-09-04 1998-09-27 1998-09-27

2000 2000-10-13 2000-09-18 2000-09-17 2000-09-17 2000-08-07 2000-08-07

2007 2007-08-30 2007-07-20 2007-09-13 2007-09-13 2007-05-31 2007-08-19

2009 2009-09-20 2009-08-10 2009-08-01 2009-08-01 2009-09-09 2009-08-08

2011 2011-08-25 2011-07-31 2011-08-07 2011-08-07 2011-07-13 2011-07-13
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November or December. All 30 Landsat images were obtained from the US Geological Survey
(USGS).19

The images were provided by USGS with pixel values as scaled integers [digital numbers
(DNs)] proportional to the top-of-atmosphere spectral radiance (Lλ, in Wm−2 sr−1 μm−1). For
each path/row combination, all five dates of imagery were visually screened for clouds,
dust, aerosols, and other atmospheric phenomena, and then a common area of overlap was
delineated and extracted, within which all five images provided high-quality data.

Even after this visual screening process, spatial and temporal variation in atmospheric scat-
tering and absorption would be expected to cause variations in the top-of-atmosphere upwelling
spectral radiance among these 30 images. This would happen even when no actual change occurs
on the surface, although given the relatively dry atmosphere in this arid region such atmospheric
effects might be expected to be less significant than in a more humid area. Because all ground
truth data for the study were obtained at the end of the time series (2012), it was essential to
minimize this interimage variability in top-of-atmosphere spectral radiance associated with
changing atmospheric conditions.

Two methods for reducing extraneous interimage variance in the spectral data were consid-
ered. Initially, a widely used atmospheric correction method20 was employed to model at-surface
spectral reflectance (ρλ). However, comparison of the resulting spectral reflectance values for
temporally stable targets (e.g., unvegetated rock outcrops and sand dunes) showed that substan-
tial differences in ρλ persisted despite the correction process, perhaps due to incomplete model-
ing of atmospheric conditions.

Had in situ observations of downwelling spectral irradiance been available for all 30 Landsat
image locations and dates, it might have been possible to perform a more rigorously determin-
istic atmospheric correction process to produce temporally stable estimates of at-surface spectral
reflectance. In the absence of such data, an empirical image normalization process was used
instead, as defined in Eq. (1) below and implemented using the spatial modeler in ERDAS
Imagine. This normalization process was based on identifying a set of temporally stable targets
(as defined in the preceding paragraph) whose inherent spectral reflectance patterns should not
change from image to image. The scaled spectral radiance measurements (DNs) for each image
were adjusted so that their mean values were consistent at these temporally stable targets. First,
the five temporal images for each path/row combination were radiometrically normalized to
match their mean values at the stable targets

EQ-TARGET;temp:intralink-;e001;116;352Lλ;i;p;post ¼ ðLλ;i;p;pre − Lλ;i;t;preÞ
�

σ̄λ;t
σλ;i;t;pre

�
þ L̄λ;t; (1)

where Lλ;i;p;post is the postnormalization value for pixel p at wavelength λ in image i, Lλ;i;p;pre is
the prenormalization value for pixel p at wavelength λ in image i, Lλ;i;t;pre is the prenormalization
value for stable target t at wavelength λ in image i, σ̄λ;t is the mean of standard deviations of
values for stable target t at wavelength λ over all image dates, σλ;i;t;pre is the prenormalization
value for stable target t at wavelength λ in image i, and L̄λ;t is the mean value of stable target t at
wavelength λ over all image dates.

Next, stable targets within the area of overlap between adjacent path/row combinations were
used in a similar fashion for radiometric normalization across paths and rows. In principle,
this temporal and spatial normalization process should result in all 30 images having a nearly
uniform spectral “signature” for a given surface feature type.

To further reduce extraneous image-to-image variability in Lλ, Landsat spectral bands 1 (0.45
to 0.52 μm wavelength) and 2 (0.52 to 0.60 μm) were discarded. These short-wavelength bands
are the most strongly affected by Rayleigh scatter in the atmosphere, whereas the at-surface
spectral reflectance in these bands is generally very highly correlated with that of the
longer-wavelength band 3 (0.63 to 0.69 μm) that is less affected by scatter. Thus, by omitting
these two bands, the effect of Rayleigh scatter can be greatly reduced without a large loss in
information content.

The six images providing spatial coverage for each year were then mosaicked in preparation
for classification and spectral mixture analysis. With null values being encoded as zero in the
input images, the mosaicking process (in ArcGIS) took the highest value for each pixel in areas
of overlap, so that null values would never replace valid data in the mosaic.
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2.2 Landsat Image Classification

A rule-based classification procedure was used to classify each annual image mosaic into five
generalized information classes: water, agricultural crops, natural (nonagricultural) vegetation,
and two different classes of unvegetated desert (one primarily sand dunes and other aeolian
features, the other interbedded sand and silt layers in previously inundated areas). Urban
areas, roads, and other similar features were omitted from the classification scheme due to
their sparse extent within the study region. Field observations from August 2012 were used
to help interpret spectral patterns in the 2011 imagery, and these spectral patterns were then
used to classify all image dates, since the normalization process described previously should
ensure that the same surface feature types in each image have similar spectral “signatures.”
Note that this procedure assumes that features seen on the ground in 2012 were unchanged
from 2011, but does not require them to have been unchanged in the previous years.

The radiometric normalization and image classification processes are shown in Fig. 2. The
classification was implemented using the ERDAS imagine spatial modeler, with the same model
used to classify all 5 years of imagery. The image parameters used in the rules were as follows:

• Scaled spectral radiance (DN) in the red and near-infrared bands (bands 3 and 4 on
Landsat-5 and -7).

• Normalized difference ratio based on near-infrared and red bands (NDVI).
• Normalized difference ratio based on mid-infrared and red bands [ND53; (band 5 − band

3)/(band 5 + band 3)].

Fig. 2 Radiometric normalization and classification of Landsat images. Row 1: five dates of
imagery for the same area, showing spectral variations due to atmospheric conditions and
land cover change. Row 2: normalized images showing land cover change only, after compen-
sation for atmospheric conditions. Row 3: classified output for each date, using rules based on
spectral patterns and information from field-visited training sites.
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The specific rules used in the model are listed in Table 3.
Many different methods have been described for accuracy assessment of remotely sensed

image classification.21 In general, different sampling schemes provide different advantages and
disadvantages. For this project, an ideal accuracy assessment scheme would include the following:

1. Randomness (to ensure that samples are representative of the area);
2. Stratification (to ensure adequate sampling of sparsely distributed classes);
3. Adequate sample size (to provide a robust estimate of accuracy); and
4. Accessibility of sites in the field (for in situ verification).

Unfortunately, there are strong conflicts among some of these preferred values (e.g., given
the remoteness of the study region and the physical and administrative limitations on travel, a
completely randomized design would be impractical in terms of accessibility). To circumvent
this problem, two separate accuracy assessments were conducted, one based on a stratified
random sample of 250 points that were photointerpreted from high-resolution imagery but not
visited in the field, and a separate assessment based on 169 points that were visited in the field
but with no randomization (the field-visited points were selected on an ad hoc basis biased
toward proximity to roads).

For the stratified random sample, 50 points were generated at completely randomized loca-
tions within the set of pixels classified as each land cover class in the 2011 image, and their
“true” class interpreted by examination of high-resolution satellite imagery (primarily true-color
images from the WorldView-2, GeoEye-1, or QuickBird satellites; all of which are an order of mag-
nitude higher spatial resolution than Landsat) provided via the ESRI imagery web map service.22

This photointerpretation was performed by an analyst who was uninvolved in the Landsat classi-
fication and who did not have access to the classification results. At the scale of the high-resolution
imagery, the interpreter was able to see individual shrubs and other small features with sufficient
detail to differentiate among the relatively broad set of land cover classes used here.

For both of the accuracy assessments, an error matrix was produced, from which the overall
accuracy and class-specific user’s and producer’s accuracy estimates were derived. In addition,
for the photointerpreted sample, the κ̂ coefficient and its variance were calculated. κ̂ provides an
adjusted estimate of classification accuracy that compensates for the expected fraction of cor-
rectly classified samples due to random chance. While there is disagreement23 within the field
concerning the utility and validity of κ̂, it continues to be widely reported (and often expected) in
assessments of classification accuracy. The method for calculating the variance of κ̂ was chosen
for suitability with a stratified random sample.24 Since calculating κ̂ and its variance for an ad
hoc (nonrandom) sampling scheme is problematic, these estimates were only reported for the
photointerpreted sample, not the field-visited sample.

2.3 Landsat Image Spectral Mixture Analysis

The “hard” categories produced by the rule-based classification process can provide one way of
quantifying land cover change, e.g., denoting the number of hectares that transitioned from

Table 3 Rules for classification of the Landsat images. B3 and B4 are radiometrically normalized
Landsat TM or ETM+ scaled spectral radiance (DN) in bands 3 and 4.

Order Rule Outcome if true

1 (B3 ¼ 0) Unclassified

2 (B3 > 0) and (NDVI < −0.09) and (B4 < 40) Class 1 (water)

3 (B3 > 0) and (NDVI > 0.24) Class 2 (agriculture)

4 (B3 > 0) and (NDVI ¼ 0.0 to 0.24) Class 3 (natural vegetation)

5 (B3 > 0) and (ND53 > 0.15) and (NDVI ¼ −0.09 to 0.0) Class 4 (sandy soil)

6 (B3 > 0) and (ND53 <¼ 0.15) and (NDVI ¼ −0.09 to 0.0) Class 5 (sand/silt)
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classes A to B during the interval between two images. However, more subtle landscape changes
may not be drastic enough to register as a full transition between classes. For example, increased
water availability might lead to a gradual increase in the percent cover of vegetation within a
given image pixel. To assess these kinds of subpixel changes in vegetation cover, we used linear
spectral unmixing, implemented using spectral mixture analysis algorithms in ENVI 5.0, with
the same set of 30 Landsat images from Sec. 2.2.

The linear spectral unmixing process assumes that the spectral pattern associated with a given
pixel in an image can be modeled as a linear mixture of two or more “pure” spectra, each
weighted by its fractional area of coverage within the pixel.25 These pure spectra, or endmembers
of the linear mixture model, were extracted from areas of the imagery that were expected to have
as close to 100% cover as possible from a single land cover class (water, vegetation, and patches
of two unvegetated soil classes in the desert—sand dunes and flat-lying, light-toned silty soil).

The output from the mixture model consists of one raster layer for each land cover type, with
each pixel containing the percent cover of that land cover type within the given pixel. A pixel that
includes part of a river, plus a sandy area with scattered shrubs, might be inferred to have 0.35
(35%) coverage of water, 0.50 (50%) coverage of sand, and 0.15 (15%) of vegetation. If, over
time, groundwater levels in that pixel increased due to infiltration from the river channel, the
vegetation fraction might increase while the sand fraction correspondingly decreases.

One common anomaly in this process is the presence of pixels with fractional cover that
exceeds the ½0: : : 1� range for a given class. Since fractional cover <0 or >1 is physically unre-
alistic, this is considered an artifact of errors in the selection of endmembers or the assumptions
in the mixture model. Often the cause is the presence of one or more pixels whose spectra are
more “extreme” than the pixels chosen as “pure” endmembers for the model—if the training area
used to extract the vegetation pure spectrum only has 95% cover of vegetation, but is assumed to
be 100%, then any pixel whose actual percent cover exceeds 95%may produce a fractional cover
>1.0 in the output. There are a variety of ways of handling this problem; for this study, fractional
cover was truncated at 0 and 1.

2.4 Analysis of Landscape Phenology and Decadal Trends with
MODIS Imagery

The Landsat imagery used for classification and linear spectral unmixing provides relatively
high-spatial resolution at coarsely spaced and irregular temporal intervals (1998, 2000, 2007,
2009, and 2011). To complement this, we used imagery from the Terra and Aqua MODIS instru-
ment at a coarser spatial scale (250 m pixels) but very fine temporal resolution (one image every
8 to 16 days, from February 2000 to the present).

The MODIS images were obtained from the MODIS data pool at the land processes distrib-
uted active archive facility (LP-DAAC), as MOD13Q1 vegetation index data. Each of the 544
images includes two vegetation indices, the NDVI, and enhanced vegetation index, plus addi-
tional ancillary data. Each image represents a composite of the best cloud-free data obtained by
one satellite (Terra or Aqua) during a 16-day window. Following the launch of Aqua in mid-
2002, the 16-day composites from the two satellites are offset by half a cycle, so as to provide
one image every 8 days. The vegetation index data sets were kept in their original sinusoidal
coordinate system during the data processing and analysis steps, to avoid loss of information via
resampling, but were reprojected to an Albers equal-area coordinate system for visual display in
Figs. 3 and 8.

Figures 3 and 4 show the nature of this time series of 544 vegetation index images. In Fig. 3,
a single composite NDVI image (for the 16-day period starting on 2 June 2011) is shown in
grayscale, with brighter pixels representing higher vegetation index values, and thus a higher
fractional coverage of photosynthetically active vegetation. Figure 4 shows the full time series of
NDVI values for two individual pixels extracted from the “stack” of images. One pixel is located
on a farm that was under cultivation for the entire period, and thus shows a strong seasonal cycle
in all years. The second pixel is on a newly established farm; its NDVI time series shows an
initial period of low NDVI values, followed by years with higher NDVI and stronger seasonal
cycles in later years once the farm was in operation.
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“Temporal signatures” like those shown in Fig. 4 were extracted for areas of interest in the
MODIS vegetation index data set. Due in part to the coarse spatial scale and the inconsistent
relationship between the spatial positions and extents of ground resolution cells in the daily
level-0 MODIS imagery versus the gridded 16-day MOD13Q1 composite images, there is a
substantial amount of noise in the raw NDVI data. To highlight seasonal and interannual trends,
an LOESS-smoothed version of the NDVI time series was also derived for all extracted temporal
signatures, using a 12-point timescale.26,27

Finally, decadal trends in NDVI were also calculated for all MODIS pixels in the study
area, using an ordinary least squares approach, implemented using scripts we developed
for the ERDAS imagine spatial modeler. This method28 minimizes the sum of the squares of
residuals (differences between the modeled and the observed values), based on the following
equation:

EQ-TARGET;temp:intralink-;e002;116;194b1;j ¼
PðxiyijÞP

x2i
; (2)

where b1;j is the NDVI trend for pixel j (per year; multiply by 10 for decadal trend), xi is the date
of image i, expressed as decimal year (e.g., 2010.495), and yij is the NDVI value for pixel j in
image i.

These temporal signatures and decadal trends were examined for various landscape units
within the study region (e.g., riparian buffer zones versus areas away from rivers) to provide
an alternative view of landscape change within the region, complementing the analyses of
Landsat image classification and spectral mixture modeling.

Fig. 4 MODIS NDVI time series of vegetation index data (Y -axis), for two farm fields.

Fig. 3 MODIS NDVI vegetation index image (June 2, 2011).
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3 Results

3.1 Landsat Image Classification

Figure 5 shows the results of the land cover classification process. Similar classified maps were
produced for all 5 years, allowing changes in land cover to be assessed from 1998 to 2011. As
shown in panels (c) and (d) of this figure, one of the most striking changes during this time period
was the rapid expansion of irrigated agriculture in the major oases (the enlargements in Fig. 5 are
for the Korla/Yuli oasis) and along rivers.

The spatial extent of water on the landscape fluctuated widely. Open water in rivers, lakes,
and reservoirs totaled only 27 km2 in 2009 but covered 496 km2 in 1998. Agriculture nearly
tripled in area, increasing from 1376 km2 in 1998 to 3742 km2 in 2011 (Table 4). Given that
essentially all of this agricultural land requires irrigation, this expansion will clearly impose

Fig. 5 Examples of Landsat image classification results. (a) Normalized Landsat mosaic (2011),
bands 5, 4, 3 as RGB. (b) Classification from (a). (c) and (d) Enlargements of the Korla oasis from
1998 and 2011, respectively, showing rapid expansion of irrigated agriculture. In classified
images, light green indicates agricultural land, dark green is natural vegetation, blue is water,
and tan shades are two classes of unvegetated desert soils.
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a corresponding demand for water on the region’s water management. Meanwhile, over the
course of the study period, natural (unmanaged) vegetation remained relatively stable in its
net extent, from 5886 km2 in 1998 to 5966 km2 in 2011 (Table 4), but experienced losses
in some areas and increases in others.

The results of the two accuracy assessments for the land cover classifications were provided
as error matrices in Tables 5 and 6. Table 5 presents the results of the random, photointerpreted
sample, whereas Table 6 shows the nonrandom but field-visited sample. In each case, the rows of
the matrix show the distribution of sample points by their mapped class, whereas the columns
show the distribution of points by their “true” class.

For the random sample of photointerpreted points, the overall accuracy was 91%, and κ̂ was
0.89 (2σ range 0.86 to 0.92). All of the class-specific producer’s and user’s accuracy values
were >80% with the exception of the user’s accuracy for the sand-silt class of desert soils
(76%). The most frequent errors were as follows:

• Areas of natural vegetation misclassified as sand-silt desert soils: The majority of these
were sites where scattered shrubs occur on relatively bright, high-reflectance soil. In some
cases, the shrubs may be very sparse, or dormant, or have a particularly low leaf-area index.
It is likely that the sensor and classifier were responding to the dominant soil reflectance
signature rather than the weaker vegetation signature.

• Agricultural fields misclassified as natural vegetation: These are typically cases where an
obvious rectangular field was constructed on the ground in preparation for cultivation, but
no crop was present at the time of the Landsat image. These were either new fields or fields
that were fallow. Since these fields were presumably not being irrigated at the time of

Table 4 Area of selected land cover classes within the study region, 1998 to 2011.

Year Surface water (area, km2) Agriculture (area, km2)
Natural vegetation

(area, km2)

1998 496 1376 5886

2000 347 1719 6056

2007 159 2845 6749

2009 27 2942 5819

2011 180 3742 5966

Table 5 Accuracy assessment error matrix from photointerpreted sites. Numbers on the major
diagonal, in bold face, were correctly classified. Overall accuracy was 91%, κ̂ was 0.89 (2σ range
0.86 to 0.92).

Validation data (from high-resolution photointerpretation)

Water Agric. Nat-veg Sand Sand-silt
Row
total

User’s
accuracy (%)

Classification
results

Water 49 0 0 0 1 50 98

Agric. 0 50 0 0 0 50 100

Nat-veg 0 6 44 0 0 50 88

Sand 0 0 3 47 0 50 94

Sand-silt 3 1 7 1 38 50 76

Column total 52 57 54 48 39 250

Producer’s
accuracy (%)

94 88 81 98 97
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image acquisition, this “misclassification” may actually have been preferable in terms of
understanding the water management demand.

The results of the second accuracy assessment, based on field-visited rather than photointer-
preted points, were shown in Table 6. Overall accuracy (89%) was quite similar to that from the
randomized assessment but the class-specific user’s and producer’s accuracies varied, as can be
seen by comparing Table 6 to Table 5. In terms of user’s accuracy, the field-based accuracy
assessment suggested a higher level of accuracy for the natural vegetation and sand-silt classes
(compared to the photointerpretation-based assessment), but a lower accuracy for sand alone.

Fig. 6 Example of a vegetation fraction output layer, from linear spectral unmixing. Pixel bright-
ness represents the percent cover of vegetation from 100% cover (white) to 0% cover (black). The
area shown is at the southern edge of the Korla/Yuli oasis, with the Konqi River at top and
the Tarim River at bottom.

Table 6 Accuracy assessment error matrix from field-visited sites. Numbers on the major diago-
nal, in bold face, were correctly classified. Overall accuracy was 89%.

Validation data (from in situ observation)

Water Agric. Nat-veg Sand Sand-silt
Row
total

User’s
accuracy (%)

Classification
results

Water 4 0 0 0 0 4 100

Agric. 0 23 0 0 0 23 100

Nat-veg 0 2 47 0 0 49 96

Sand 0 0 10 66 5 81 81

Sand-silt 1 0 0 0 11 12 92

Column total 5 25 57 66 16 169

Producer’s
Accuracy (%)

80 92 82 100 69
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For producer’s accuracy, the field-based assessment showed a lower accuracy for water and
sand-silt, but slightly higher accuracies for all other classes.

3.2 Landsat Image Spectral Mixture Analysis

The spectral mixture analysis process resulted in a series of layers representing the fractional
cover of each major land cover class (water, vegetation, and soil classes) for each of the 5 years.
Figure 6 shows a representative example of the output, for the vegetation fraction layer in 2011,
in an area south of Yuli near the Tarim and Konqi Rivers. Bright pixels represent higher fractional
coverage of vegetation, whether agricultural crops or particularly dense patches of natural ripar-
ian vegetation. Darker gray pixels are areas with sparser vegetation cover (primarily scattered
shrubs in the desert) and black pixels are unvegetated areas (water or bare sand). One particularly
notable aspect of Fig. 6 is the distinct patterns of sparse but still extant vegetation following the
dense network of meandering former river channels between the current channels of the Tarim
and Konqi Rivers. These faint gray patterns extend from left to right across the center of the
image in Fig. 6 and will be discussed further below.

Fig. 7 Fractional cover of vegetation within 120 m riparian buffer zone, along four reaches of the
Tarim and Konqi Rivers. (a) Upstream on the Tarim River near Lunnan. (b) and (c) Downstream
below the dam at Daxihaizi, and below Argan. (d) Konqi River downstream from the Yuli oasis.
In (a), the full data are shown in thin lines with a LOESS-smoothed version superimposed;
in (b)–(d) only the LOESS versions are shown. (e) Locations of the graphs shown in (a)–(d),
superimposed on the 2011 fractional vegetation cover map.

Chipman et al.: Impacts of land cover change and water management practices. . .

Journal of Applied Remote Sensing 046020-13 Oct–Dec 2016 • Vol. 10(4)

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 12/02/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



To explore the effects of the post-2000 water conveyances on the lower Tarim River, we
examined the percent cover of vegetation within a 120-m riparian buffer zone, in all 5 years
(1998, 2000, 2007, 2009, and 2011). Pixels classified as water or agriculture were excluded
from this analysis, to focus on natural riparian vegetation communities. As shown in Fig. 7(a),
at Lunnan—far upstream from the conveyances—water was relatively abundant in all years and
there was no discernable change in riparian vegetation cover from year to year. Downstream,
however, at Daxihaizi (b) and Argan (c), there was a clear increase in riparian vegetation cover,

Fig. 8 Decadal trend in MODIS vegetation index series, for the entire basin (top) and for the Tarim/
lower Konqi River area (bottom). Green pixels represent increasing index values, whereas brown
pixels represent decreases.
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with all post-2000 years being higher than 1998 or 2000. Meanwhile, on the lower Konqi River,
there was an actual decrease in riparian vegetation after 1998.

3.3 Analysis of Landscape Phenology and Decadal Trends with
MODIS Imagery

Figure 8 shows a map of the long-term trend in MODIS NDVI during the summer months (July,
August, and September) for the entire Tarim basin, as well as an enlargement for the area
between the Yuli and the Qiala Reservoir, around the Konqi and Tarim Rivers. Overall, there
was an increase in summer NDVI across the agricultural areas—oases, Bingtuan (quasimilitary)
farm areas, and smaller farms along rivers. As expected, there was no trend in NDVI in most
desert areas. However, several areas showed unexpected decreasing trends in NDVI.

1. Areas outside the river channels that previously experienced flooding. The large brown
patch in the center of Fig. 8 (bottom) is typical of this case. The area was flooded in 2000
to 2001 (Fig. 9), leading to a proliferation of green vegetation in subsequent years, but
when the floodwaters did not return, the area experienced a gradual decline in NDVI.

2. Declining NDVI on slopes of the Tian Shan, particularly in the Kaidu watershed and the
Bosten Lake basin. In these areas, there was a consistent gradual downward trend in
NDVI, with the annual mean falling at a rate of ∼0.08 to 0.09 per decade.

The detailed time-series of NDVI data for riparian zones on two reaches of the lower Tarim
River are shown in Figs. 10(a) and 10(b), with summary data in Table 7. These are the lowest
(below Argan) and second-lowest (Daxihaizi to Argan) reaches on the river, characterized by a
relatively thin ribbon of riparian vegetation surrounded by desert, with little to no agriculture
present. Both reaches showed the same general pattern, with both mean NDVI and amplitude of
the seasonal cycle increasing from 2000 to 2008, then flattening or declining until 2012.

In contrast, Fig. 10(c) shows a very different temporal evolution for the area between the
Konqi and the Tarim Rivers southeast of Yuli. The broad-scale floods of 2000 to 2001
(Fig. 9) produced large increases of NDVI and its seasonal amplitude during the immediately
following years, but over the ensuing decade with no return of these floods, the landscape
experienced a drying trend with reduced NDVI and less seasonal variation.

Fig. 9 Overbank flooding along the lower Konqi River, seen in Landsat band 4 images.
(a) September 17, 2000, early in the flood episode. (b) August 7, 2011, no flooding.
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4 Discussion

The multiple analytical approaches used in this study provide complementary but not identical
views of broad-scale changes in land use/land cover, and particularly in vegetation cover, from
1998 to 2012. Over this time period, irrigated agriculture (primarily cotton) expanded dramati-
cally, nearly tripling its extent on the landscape. The obvious impact of this is to greatly increase
the demand for water in the region. At the field level, cotton production in China requires
7180 m3 ha−1 of water.29 At that rate, the expansion of agriculture within our study area
from 1998 to 2011 would have translated to a demand for an additional 1.7 × 109 m3 of water
per year. However, that field-level water requirement is probably too low for South Xinjiang,
where evaporation rates are higher than other cotton-producing regions of China. Assuming
a requirement of 10;000 m3 ha−1 (similar to those for other sites in Central Asia) suggests
that annual demand for water within the study region has increased by 2.4 × 109 m3 of
water. As land conversion for agriculture continues, this water demand will presumably increase
as well.

Fig. 10 MODIS NDVI time series of vegetation index data: (a) Tarim River below Argan; (b) Tarim
River, Daxihaizi to Argan; (c) area of overbank flooding in 2000 between Konqi and Tarim Rivers.
Dots are raw MODIS NDVI, solid lines are LOESS smoothed versions with a 12-point timescale.
For comparison to (a) and (b), panel (d) shows volume of water conveyances to the Lower Tarim
River.
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At the broad landscape scale, there has been little change in the total extent of unmanaged,
natural vegetation (Populus euphraitica woodlands, shrublands, and grasslands) over the past
decade. However, along the lower reaches of the Tarim River, downstream from Daxihaizi
Reservoir, there was a gradual increase in the extent of riparian vegetation, particularly during
the first half of the decade. After 2007, this increase stabilized or began to reverse itself. This
pattern is evident in both the Landsat-derived estimates of fractional coverage of vegetation, as
well as in the spatially coarser but temporally fine-scaled NDVI data from MODIS. As shown in
Table 1 and Fig. 10(d), these trends qualitatively correspond to the timing of the intermittent
conveyances of water into the lower Tarim, by transfer from the Konqi River and by the release
of water from Daxihaizi reservoir—these conveyances were more extensive during the first half
of the decade, then became smaller and more infrequent. The single large conveyance in late
2010 might have led to a resumption in the increase of greenness, but in the absence of further
conveyances it is likely that any such increase will have been short lived.

There are indications that the lower Konqi River, downstream from the heavily irrigated Yuli
oasis, may have experienced a decrease in riparian vegetation cover post-1998. It is suggestive
that this occurs during the decade when water is being conveyed out of the Konqi River and into
the Tarim, but establishing a causal relationship would require more detailed analysis [as shown
in Figs. 5(c) and 5(d), there has been a rapid expansion of irrigated agriculture within the Konqi
watershed itself, so transfers to the Tarim are not the only factor that could explain decreased
water availability downstream].

More clearly, there are indications that intermittent, broad-scale flooding—including epi-
sodes in which floodwaters break out into new or former channels—are responsible for sudden
increases in vegetation cover and greenness at the landscape scale, away from the immediate
riparian zone that has been the focus of most ecohydrology studies on the Tarim River to date.
Figures 8(b), 9, and 10(d) show this process and its aftermath. Considering the rhetorical impor-
tance of ecological restoration in the past decade’s policy of water conveyances, it is worth
considering what will happen at the broader landscape scale, not merely in the “green ribbon”

Table 7 LOESS-filtered MODIS NDVI statistics for two reaches of the lower Tarim and one site of
overbank flooding away from river channel. Annual mean and range (amplitude of seasonal cycle)
are shown for each year.

Tarim Tarim Overbank flood area

Below Argan Daxihaizi to Argan Between Konqi + Tarim

Year Mean Range Mean Range Mean Range

2000 0.067 0.022 0.069 0.025 0.123 0.110

2001 0.065 0.019 0.065 0.018 0.214 0.316

2002 0.070 0.019 0.071 0.016 0.233 0.195

2003 0.074 0.037 0.072 0.028 0.235 0.280

2004 0.082 0.036 0.083 0.040 0.222 0.134

2005 0.082 0.048 0.084 0.045 0.204 0.124

2006 0.080 0.047 0.083 0.038 0.180 0.103

2007 0.083 0.037 0.085 0.045 0.151 0.104

2008 0.083 0.046 0.086 0.053 0.141 0.113

2009 0.077 0.022 0.078 0.026 0.131 0.055

2010 0.076 0.030 0.076 0.027 0.132 0.085

2011 0.074 0.030 0.075 0.032 0.129 0.088

2012 0.081 0.035 0.089 0.056 0.119 0.125
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of riparian vegetation along the existing river channel itself. One plausible future scenario would
involve more and more intensive management of flows within the channel, perhaps leading to
modest groundwater recharge and riparian vegetation recovery along the river downstream from
Daxihaizi Reservoir. At the same time, though, this more intensive management would lead to a
decrease in the frequency and extent of stochastic, broad-scale flood episodes that in the past
have intermittently conveyed large volumes of water to the landscape further away from the river
channel. If sustained long enough, this change to the landscape-scale flood regime could have
large consequences for the mosaic of vegetation communities in the region.

Each of the three analytical streams in this study contributes to a consistent picture of an
evolving ecohydrological landscape, but the differences among the three suggest that they should
be seen as complementary rather than redundant. The land cover classification and linear spectral
mixture analysis methods were both applied to the same source data—multispectral imagery
from Landsat-5 and -7. The land cover classification process, however, did not allow differen-
tiation among riparian ecosystems with similar composition but different degrees of canopy
cover. The spectral mixture analysis did provide that differentiation, but (in this study) did
not distinguish between agricultural and natural vegetation. Using the two in combination pro-
vides a far more comprehensive view than either one alone. Meanwhile, the MODIS vegetation
index data offer an unprecedented high temporal resolution, allowing the seasonal cycle to be
resolved and interannual differences in its amplitude or other properties to be examined; but at
the cost of a much coarser spatial resolution.

Over time, it is possible that platforms such as SENTINEL-2A/2B may support some of the
temporally dense phenological analysis that now requires coarser-resolution systems such as
MODIS, while simultaneously allowing finer-scale image classification and spectral mixture
modeling. At the same time, however, there will be a push to use still higher-resolution systems
(e.g., WorldView-3) for much more spatially detailed vegetation mapping. Thus, while individ-
ual sensors and constellations of similar sensors become more capable, the incentive for multi-
sensor approaches will likely persist.

The methods used here should be readily adaptable to other arid landscapes, and indeed while
the synergistic use of these different approaches is novel, variants of each individual method
have been demonstrated elsewhere. The relatively lower frequency of cloud cover makes satellite
remote sensing a particularly useful tool in arid regions. The existence of a long-term archive of
historical imagery from Landsat (extending back to the 1980s at 30 m spatial resolution, and the
1970s at 79 m resolution) and MODIS (since 2000) provides a rich source for future studies of
long-term change. Large-area and multitemporal studies benefit from freely available imagery,
but ultrahigh resolution vegetation mapping may necessitate the purchase of more costly data
from commercial satellite operators.

5 Conclusion

We have used three complementary approaches to examine the impacts of land cover change and
water management on the Tarim and the Konqi river systems and their surrounding landscapes in
Xinjiang, China. Spectral classification of a time series of Landsat images showed (as expected)
that agriculture has expanded rapidly since the late 1990s, in part at the expense of natural ripar-
ian forest and shrub communities. The total area of natural, unmanaged riparian vegetation
stayed approximately constant, but did so by dynamically expanding in some areas (e.g.,
along the lower Tarim) while experiencing losses elsewhere. Linear spectral mixture analysis
added more detail to this picture, with the fractional cover of riparian vegetation changing little
along the middle reaches of the Tarim River, whereas fractional cover increased following water
conveyances on the Lower Tarim but decreased on the Konqi River. Finally, analysis of high
temporal resolution image time series data from MODIS showed broad-scale patterns of increas-
ing and decreasing greenness in different portions of the study area, including a landscape-scale
response by vegetation to past episodes of overbank flooding.

Comparing the results from three different analytical approaches (land cover classification, spec-
tral mixture analysis, and landscape phenology analysis) gives increased confidence in our findings
about the nature and extent of environmental changes in the Tarim/Konqi region. In this case,
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it shows that land use/land cover change and water management policy—both deliberate and inad-
vertent—are having large and spatially disparate impacts on the region’s ecosystems. Over the com-
ing decades, the forces driving change in the hydrology of the Tarim and Konqi basins—including
land cover change, urbanization, industrialization, resource extraction, interbasin water transfers,
channelization, decadal-scale climate variability, and long-term anthropogenic climate change—
are expected to continue or in some cases intensify. Given the vast spatial scale of these river sys-
tems, remote sensing provides the only feasible way to monitor the effects of these changes on
riparian and distal ecosystems. More broadly, the methods being used in this study should be con-
sidered for use in other arid regions with montane-sourced water systems under stress from growth,
development, and climate change, from Central Asia to the Andes to the southwestern US.
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