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Abstract 32 

The current rate of groundwater extraction in the United States is unsustainable, making it essential to 33 

understand the impacts of limited water use on food production. Here, we integrate a gridded crop model 34 

with satellite observations and water survey data to assess the effects of sustainable groundwater 35 

withdrawals on US agricultural production. Using the most optimistic assumptions for groundwater 36 

extraction, we find that sustainable groundwater use will decrease US irrigated production of maize, 37 

soybean, and winter wheat by 20%, 6%, and 25%, respectively. Using more conservative assumptions of 38 

groundwater availability, US irrigated production of maize, soybean, and winter wheat will decrease by 45%, 39 

37%, and 36%, respectively. Model uncertainty was assessed by comparing simulations with independent 40 

estimates. Seasonal simulated evapotranspiration in agricultural areas between crop models and satellite 41 

based estimates (ALEXI) were in agreement (R2 = 0.68 across simulations). Additionally, model simulations 42 

of total production per county and average yield were strongly correlated with survey data from the United 43 

States Department of Agriculture (R2 ranged 0.82-0.94 for county level production and 0.37-0.54 for yield 44 

across crops). These results demonstrate the vulnerability of US agricultural production to unsustainable 45 

groundwater pumping, highlighting the difficulty of expanding or even maintaining food production in the 46 

face of climate change, population growth, and shifting dietary demands. 47 

 48 

Significance Statement 49 

To our knowledge, this study provides the most thorough and realistic continental-scale assessment of US 50 

irrigated agricultural sustainability to date. Through our modeling approach, we identify regions that are 51 

vulnerable to groundwater supply reductions, as well as the characteristics common across both vulnerable 52 

and resilient agricultural districts.  The results of this study have several important implications for 53 

agricultural stakeholders and policymakers in the United States. First, it quantifies the national production 54 

supported by unsustainable groundwater pumping.  Second, by identifying vulnerable regions, it highlights 55 

areas that can be targeted for enhanced groundwater management and irrigation efficiency initiatives.  56 

Finally, the sensitivity of production losses across groundwater supply scenarios provides information about 57 

the limitations of each agricultural district and context for climate change impacts assessments. 58 

  59 
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Introduction 60 

Groundwater extraction in much of the United States (US) is unsustainable(1–4). Combined, the two major 61 

aquifers in the US, the Ogallala in the High Plains and Central Valley in California, were depleted by 62 

approximately 12.5 km3 and 3.1 km3 per year between 2003 and 2013, respectively(5).  This depletion is 63 

equivalent to 15% of the total groundwater extraction in the US in 2010(1). Between 2010 and 2015, 64 

groundwater withdrawals for irrigation increased by 16%(2). Irrigation used 67% of the total US groundwater 65 

extraction in 2015(2), and exceeds groundwater recharge across 15% of the contiguous US(3). 66 

Groundwater extraction for irrigation must substantially decrease for US agricultural production to be 67 

sustainable, but doing so would have a negative impact on both the US and world food supplies.  The US 68 

is responsible for 36% of the global maize production, 35% of the global soybean production, and 8 % of 69 

the global wheat production(4). These crops occupy 52% of the US irrigated agricultural area (maize 22%, 70 

soybean 17% and wheat 13%)(2). The tension between increasing food production and using water 71 

sustainably raises two critical questions: how much groundwater can be extracted while still irrigating 72 

sustainably, and what would the impacts of irrigating sustainably be on agricultural production? 73 

 74 

Sustainable groundwater extraction for agriculture can be approximated using the concept of safe aquifer 75 

yield. Safe aquifer yield is defined as the estimated sustainable groundwater extraction rate and based on 76 

aquifer recharge rates(6). The safe aquifer yield over agriculturally intensive areas can be derived using a 77 

water balance approach, where the aquifer recharge rate is calculated from water inflows (precipitation and 78 

irrigation return flow) and outflows (runoff, evapotranspiration)(3). Aquifer recharge rates are highly 79 

dependent on future precipitation, but future precipitation and drought are difficult to predict(7, 8). Therefore, 80 

safe aquifer yields are typically set below recharge rates, and can vary based on approach(3). For example, 81 

Miles and Chambet(6) proposed a conservative safe aquifer yield of 10% of recharge, while Hahn et al.(9) 82 

estimated annual safe aquifer yields between 36% and 75% of recharge for different areas depending on 83 

elevation.  Here, we define the most optimistic safe aquifer yield as 100% of recharge, and the least 84 

optimistic safe aquifer yield as 25% of recharge. 85 

 86 
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The impacts of reducing groundwater extraction on agricultural production can be addressed using a 87 

spatially explicit, process-based crop model. Process-based crop models are capable of simulating the 88 

impacts of climate and management practices on agricultural production at field to global scales(10–12). 89 

To simulate areas larger than a field, process-based crop models are run over multiple grid cells. For each 90 

grid cell, the model evaluates daily weather data, as well as information on soil properties, management, 91 

and crop varieties. In this study, we used a parallel and gridded implementation of the Decision Support 92 

System for Agrotechnology Transfer  software (pDSSAT)(12–14), which contains a collection of process-93 

based crop models. Process-based crop models have been evaluated extensively, in particular within the 94 

Agricultural Model Intercomparison and Improvement Project (AgMIP)(10–12, 15). 95 

 96 

Irrigation is critical to US agricultural production, yet unsustainable, and the impacts of reducing water use 97 

are largely unknown. In this manuscript, we calibrate a gridded, process-based crop model, and use it to 98 

assess the effects of sustainable water use on irrigated production of maize, soybean, and winter wheat 99 

across the contiguous US (Fig. 1).  We further test the sensitivity of these effects to safe aquifer yield to 100 

determine the range of possible shifts in production that would result from using water sustainably.  101 

 102 

Results and Discussion 103 

National Impacts of Sustainable Agricultural Water Use  104 

We assessed the impacts of sustainable groundwater use on irrigated agricultural production of maize, 105 

soybean, and winter wheat in the US by examining the difference in production between pDSSAT 106 

simulations with unlimited groundwater and pDSSAT simulations with groundwater reduced to a 107 

sustainable level (see Methods). Nationally averaged, production losses for the most optimistic safe aquifer 108 

yield (100% recharge) for maize, soybean, and wheat are 20%, 6%, and 25%, respectively, and production 109 

losses for the least optimistic safe aquifer yield (25% recharge) for maize, soybean, and wheat are 45%, 110 

37%, and 36%, respectively. The production losses for maize and wheat are higher than soybean for safe 111 

aquifer yields of 50% recharge or more, but at the lowest safe aquifer yields soybean production drops 112 

dramatically (Table 1).  113 

 114 
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The distribution of maize production loss is bimodal (Fig. 2), with some districts and years experiencing 115 

near complete production loss (70% – 90%) even at the most optimistic safe aquifer yield, and other districts 116 

experiencing more modest losses (10% – 30%).  We assess the significance of changes in crop production 117 

distributions for districts that experience losses using a two-sided Wilcoxon rank sum test (� = 0.05).  Maize 118 

production losses are significant for the 25% (p = 3.9 x 10-4), 50% (p = 0.0037), and 75% (p = 0.019) 119 

recharge scenarios.  Soybean production is only significantly lower than the unlimited groundwater use 120 

scenario for the least optimistic safe aquifer yield (p = 0.037), though even at higher safe aquifer yields 121 

some districts experience production losses of 70% – 90%.  Consistent with the nationally averaged losses, 122 

soybean is particularly sensitive to the safe aquifer yield scenario, with relatively few districts experiencing 123 

losses at the most optimistic safe aquifer yield (and therefore not included in Fig. 2), but many more at the 124 

least optimistic. In contrast, for districts that experience losses, winter wheat production is significantly 125 

different from the unsustainable scenario regardless of safe aquifer yield assumption (p = 2.8 x 10-4 for 126 

25%, p = 1.5 x 10-3 for 50%, p = 4.9 x 10-3 for 75%, p = 0.02 for 100%), and changes in the distribution of 127 

winter wheat losses are relatively insensitive to safe aquifer yield.  128 

 129 

Together, these analyses highlight several key impacts of sustainable water use for irrigated agriculture at 130 

the national scale. First, even for the most optimistic safe aquifer yield scenario, there are a substantial 131 

number of districts with large (70% – 90%) losses for each crop. Second, in relatively optimistic water 132 

restriction scenarios (aquifer yields of 100% and 75% of recharge) the impacts on wheat and maize are 133 

large and the impacts on soybean are small.  Finally, for the least optimistic safe aquifer yield (25% 134 

recharge) soybean losses dramatically increase and maize sustains the largest percentage production loss 135 

among the three crops considered.   136 

 137 

Geographic Distribution of Sustainable Agricultural Water Use Impacts  138 

Maize production losses are concentrated in southwestern Nebraska, western Kansas, northern Texas, 139 

and California for the most optimistic safe aquifer yield, but spread across most of Nebraska, intensify over 140 

western Kansas and northern Texas, and expand to the Mississippi Valley for the least optimistic safe 141 

aquifer yield (Fig. 3a-b). Production losses for the most optimistic safe aquifer yield overlie the two most 142 
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stressed groundwater sources in the United States: the Ogallala and Central Valley Aquifers. Qualitatively, 143 

these losses agree with future projections of irrigated maize production across the Missouri and California 144 

basins under water constraints(16).  Irrigated maize production in the Midwest, including Iowa, Illinois, and 145 

Indiana, is largely unaffected. As expected, there is a correspondence between production losses and 146 

sustainable irrigation fraction (Fig. 4, see Methods), with production losses first appearing in areas with low 147 

sustainable irrigation fractions at a safe aquifer yield of 100% of recharge, such as the High Plains and 148 

Central Valley, and then expanding to regions such as the Mississippi Valley as decreasing access to 149 

recharge (less optimistic safe aquifer yields) lowered sustainable irrigation fractions. 150 

 151 

Soybean is mainly grown in more humid eastern areas of the US, including eastern Nebraska and the 152 

Mississippi Valley, where there is greater aquifer recharge(3) and groundwater available for irrigation (Fig. 153 

3c-d).  Therefore, soybean production is less susceptible to reduced groundwater withdrawals for irrigation 154 

at optimistic safe aquifer yields. However, at less optimistic safe aquifer yields, agricultural water demand 155 

does exceed recharge, and soybean production is significantly impacted. Accordingly, losses for the most 156 

optimistic safe aquifer yield are largely restricted to southern Nebraska, while for the least optimistic safe 157 

aquifer yield losses cover extensive areas of eastern Nebraska and the Mississippi Valley. As with maize, 158 

irrigated soybean production is largely unaffected in the Midwest and production losses are generally 159 

greatest when the sustainable irrigation fraction is less than 0.5 (Fig. 4). 160 

 161 

In contrast to soybean, irrigated winter wheat production is located primarily in the more arid regions of the 162 

US with lower sustainable irrigation fractions (Fig. 4), and therefore vulnerable to even modest irrigation 163 

reductions.  For the most optimistic safe aquifer yield, production losses were split between the High Plains 164 

states of Nebraska, Kansas, and Texas, and western states of Washington, California, Idaho, and Nevada 165 

(Fig. 3e). Irrigated winter wheat is less sensitive to declining safe aquifer yields (i.e., production loss 166 

difference between 100% recharge and 25% recharge) than maize and soybean. While losses do intensify 167 

in the least optimistic safe aquifer yield, there is a substantial amount of production that is insensitive to 168 

even aquifer yields of 25% recharge. This response is clear in Fig. S1c (SI Appendix), which shows 169 

extensive production classified as red (production lost at 100% of recharge) and dark green (production 170 
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remaining at 25% of recharge). Fig. 3 and Supplementary Fig. 1c highlight that compared to maize and 171 

soybean, fewer new regions of irrigated winter wheat are affected by less optimistic safe aquifer yields, and 172 

that the same regions experiencing losses at more optimistic safe aquifer yields are further impacted at 173 

less optimistic aquifer yields.    174 

 175 

Aggregated across maize, soybean, and wheat, the most sensitive region of the US to groundwater 176 

restrictions is the High Plains. Five agricultural districts in this region show substantial yield reductions for 177 

all three crops (Fig. 3) at the most optimistic safe aquifer yield: district 11, located in northern Texas; districts 178 

10 and 30 in northwest and southwest Kansas, respectively; and districts 70 and 80 in the south of 179 

Nebraska(17). These districts have four common attributes: high irrigated agricultural area (combined the 180 

districts represent 11% of national irrigated agricultural area), large proportion of groundwater extraction for 181 

irrigation (between 94% and 97%)(1), groundwater extraction rates more than three times the aquifer 182 

recharge rates (4.0 times for district 11, 3.6 times for district 10, 3.2 times for district 30, 5.4 times for district 183 

70, and 7.5 times for district 80)(3), and located over the Ogallala Aquifer. This reinforces previous studies 184 

that have identified the Ogallala Aquifer as particularly vulnerable to changes in groundwater extraction 185 

rates for irrigation(3, 5, 18). California, overlying the Central Valley Aquifer, also experiences large 186 

reductions in maize and winter wheat yields; however, specialty crops dominate irrigated agriculture in 187 

California, making production of, and therefore production losses of, staple crops smaller than in the High 188 

Plains. 189 

 190 

The Mississippi Valley, in contrast, is relatively unaffected by sustainable groundwater use. Only four 191 

districts in the Mississippi Valley have both substantial corn and soybean production losses at the least 192 

optimistic sustainable aquifer yield: district 90 in Missouri, district 30 in Arkansas, and districts 10 and 40 in 193 

Mississippi (Fig. 3). At more optimistic safe aquifer yields, production in these districts is practically 194 

unchanged (SI Appendix, Fig. S1). While these districts also have large overall irrigated agricultural area 195 

(combined the districts represent 8% of the national irrigated agricultural area) and utilize most of the 196 

groundwater they extract for irrigation (between 87% and 98%)(1), their groundwater extraction rate is less 197 

than half of their aquifer recharge rate(3) (0.26 times for district 90, 0.48 times for district 30, 0.36 times for 198 
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district 10, and 0.4 times for district 40). Finally, across the upper Midwest, including Minnesota, Wisconsin, 199 

Iowa, Illinois, Indiana, and Michigan, irrigated production of maize and soybean is largely unaffected (Fig. 200 

3). Agricultural districts in these states are more humid and predominantly rainfed. 201 

 202 

Conclusion 203 

We show that sustainable agricultural water use, simulated by limiting groundwater use to available 204 

recharge, reduces production of irrigated maize, soybean, and winter wheat by 20% – 45%, 6% – 37%, and 205 

25% – 36%, respectively.  Winter wheat and maize production are most vulnerable at optimistic safe aquifer 206 

yields, while for the least optimistic safe aquifer yields maize is most vulnerable, followed by soybean and 207 

winter wheat. The largest production losses occur across the High Plains states, especially Nebraska, 208 

western Kansas, and northern Texas. This region is heavily reliant on groundwater from the Ogallala 209 

Aquifer, and generally cannot support rainfed agriculture.  California, drawing from the Central Valley 210 

Aquifer, and other western states also experience reduced production, although they devote less area to 211 

maize, soybean, and winter wheat.  Production losses extend to the Mississippi Valley, especially for 212 

soybean, at less optimistic safe aquifer yields.   213 

 214 

We caveat that in our analysis, technology, management, cropping areas, and the fraction of total irrigation 215 

water from groundwater are held fixed as water supply is reduced. There are a variety of adaptations such 216 

as increased aquifer monitoring and management, irrigation efficiency, crop switching, reduced soil 217 

evaporation, and deficit irrigation(19–23), that can decrease agricultural water use. We also focus on staple 218 

crops, which account for the vast majority of irrigation across the Central US, but not in the western US 219 

where specialty crops are substantial, and often the dominant, users of agricultural water. In addition, 220 

international food trade has the potential to offset some of the negative impacts of irrigation water supply 221 

shortages(24).  We note that agricultural water sustainability is just one facet of an evolving national food 222 

production system that is intricately linked to global markets. Climate change will have major impacts on 223 

irrigated crop yields through changes in plant water use efficiency(25, 26), temperature(27, 28), and water 224 

supply(29).  For example, Elliott et al.(30) found greater production losses running global gridded crop 225 

models without CO2 effects than with CO2 effects, where enhanced levels of CO2 increased simulated plant 226 
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water use efficiency.  Elliott et al.(30) also identified currently rainfed agricultural areas that had the potential 227 

for irrigation, offsetting losses from irrigated regions that were no longer viable, but requiring substantial 228 

investment. Finally, Liu et al.(24) found that projections of increased precipitation actually make much of 229 

the currently unsustainable irrigated agriculture in the Central US sustainable by the year 2050.   230 

 231 

Sustainable irrigated agriculture is vital to ensuring US food security and supporting the broader global food 232 

system. Our study highlights the range of potential impacts on irrigated crops in the US from using 233 

groundwater sustainably based on a physically constrained set of groundwater availability scenarios. Our 234 

safe aquifer yield assumptions, which linearly scale the amount of accessible recharge, could also represent 235 

the difference between immediate action to reduce groundwater consumption (most optimistic safe aquifer 236 

yield) and delaying action (least optimistic safe aquifer yield) until the viability of irrigation from the Ogallala 237 

and Central Valley Aquifers is compromised(18).  The latter scenario would not only have a devastating 238 

impact on heavily irrigated agricultural regions, and even some areas not usually thought to be groundwater 239 

limited, but would also be community-altering, reduce US agricultural productivity, and have serious 240 

repercussions for the global food supply. 241 

 242 

Materials and Methods 243 

Modeling Approach 244 

We simulated maize, soybean, and wheat yields on a 5 arc-minute grid (approximately 9 km at the equator) 245 

on a daily time step over a period of five years (2008 – 2012) using the Cropping System Models (CSMs) 246 

CERES-Maize(31, 32), CROPGRO-Soybean(33, 34), and CERES-Wheat(35), respectively. Simulations 247 

were conducted on the Dartmouth Discovery Cluster using the Decision Support System for Agrotechnology 248 

Transfer (DSSAT), a widely used biophysical modeling platform that contains a suite of CSMs capable of 249 

simulating more than 42 crops including all major staple crops(14, 36). The CSMs contained in DSSAT are 250 

point-based biophysical models that run on a daily time step and simulate crop growth and development as 251 

a function of weather, detailed soil profiles, cultivar specific parameters, and farm management. We ran 252 

gridded simulations of DSSAT in parallel using the parallel System for Integrating Impact Models and 253 
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Sectors (pSIMS)(12), which has been applied to climate change and sustainability assessments across 254 

large regions and the world (11, 30, 37, 38).   255 

 256 

Input and Calibration Data 257 

The model input data sources are summarized in Table S1 (SI Appendix). Weather data included incoming 258 

solar radiation, maximum and minimum temperatures, and precipitation. The soil database contained 259 

information for eight soil horizons for each grid, with attributes including bulk density, organic carbon, pH, 260 

and water release curve characteristics. The initial conditions and parameters, including crop specific 261 

parameters that simulate different cultivars, were similar to Glotter and Elliott(38). Crop specific land use 262 

was obtained from the USDA Cropland Data Layer (CDL)(39, 40). USDA-CDL land use data were further 263 

classified into irrigated and non-irrigated area using the Moderate Resolution Imaging Spectoradiometer 264 

(MODIS) Irrigated Agriculture Dataset for the United States (MIrAD-US)(41). All irrigated grids from each 265 

crop were simulated irrigated and rainfed in order to calculate irrigation water use efficiency (see below). 266 

The DSSAT irrigation algorithm does account for growing season rainfall throughout the study, as it triggers 267 

irrigation based on soil water status (42). However, we did not simulate deficit irrigation strategies in this 268 

study. 269 

 270 

Model Calibration 271 

We calibrated the model in two steps, first adjusting evapotranspiration (ET) based on an independent ET 272 

data source, and then calibrating the yield using county-level measurements from NASS. In DSSAT, ET is 273 

computed using an implementation of the FAO-56 crop coefficient equations(43), which estimate crop ET 274 

as a crop-type-dependent fraction of the potential ET (PET). To assess the reliability of these estimates, 275 

DSSAT ET was compared to remotely sensed ET data from the Atmosphere Land Exchange Inverse 276 

(ALEXI) model(44). ALEXI uses the morning surface temperature increase retrieved with the Geostationary 277 

Operational Environmental Satellites (GOES) in a surface energy balance algorithm to estimate surface 278 

energy and water fluxes at a 5 km resolution over the continental United States.  Using a spatial 279 

disaggregation technique, ALEXI output has been evaluated with flux tower measurements, yielding typical 280 

root mean square errors of 1.0 and 0.4 mm d-1 at daily and seasonal time scales, respectively(45). ALEXI 281 
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output was aggregated over time (growing season) and space (5 arc-minutes) to match pDSSAT growing 282 

season simulations. Additionally, since 5 arc-minute cells may contain several sources of ET, including 283 

lakes, forest, and various crops, we compared pDSSAT simulations only against aggregated ALEXI cells 284 

covered by at least 50% of the crops simulated.   We find a relatively small difference (4%) between 285 

pDSSAT and ALEXI ET, which suggests that pDSSAT ET is reasonably simulated.  While there are 286 

uncertainties in the ALEXI ET product, because it does assimilate observed temperature to infer ET, we 287 

chose to adjust pDSSAT daily evapotranspiration by 4% through a daily potential evapotranspiration 288 

multiplier.  289 

 290 

The benchmark for yield calibration was county level yearly yield data reported by the USDA NASS-Survey 291 

(irrigated and rainfed). Crop photosynthesis at the agricultural district level was calibrated to improve model 292 

simulations of yield using an ordinary least squares approach. Uncertainty in yield predictions was 293 

evaluated using a leave one-out cross validation approach (SI Appendix, Table S2). Next, we evaluated 294 

the calibrated model against USDA-NASS Survey county level production. Across the US, the correlation 295 

between simulated and observed county level production over both space and time is high for all crops, 296 

with R2 values of 0.94, 0.91, and 0.82 for maize, soybean, and wheat, respectively (SI Appendix, Table S2). 297 

Finally, evapotranspiration was re-evaluated against ALEXI (R2 = 0.68) as it was affected by the calibration 298 

of yield.. The calibrated version of pDSSAT predicts both yield and evapotranspiration better than the non-299 

calibrated model. Cropped area within pDSSAT is accurate relative to USDA-NASS Survey data at the 300 

county level , with R2 values for maize, soybean, and wheat of 0.95, 0.96, and 0.88. The correlations 301 

between pDSSAT simulations of maize, soybean, and rice yields and NASS measurements over time are 302 

0.54, 0.52, 0.37.  The bias in mean yield is below 10% for all crops, with maize simulated best and winter 303 

wheat simulated worst (SI Appendix, Fig. S3 and Table S2).  The performance of pDSSAT is comparable 304 

to crop model performance for field-scale agricultural experiments(46, 47).  305 

 306 

The modeling approach used to simulate maize, soybean, and wheat across the US is robust for most 307 

agricultural districts, with coefficient of determination between simulated and observed county level 308 

agricultural production over space and time generally higher than 0.5 for all three crops, both rainfed and 309 
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irrigated (Fig. 1).  Typically, pDSSAT is more accurate for all crops in high producing areas, such as the 310 

Midwest and the Mississippi Valley. This increase in accuracy is likely due to the dominance of the crop on 311 

the landscape and the spatial resolution of pDSSAT.  For intensive agricultural areas, the 5 arc-minute grid 312 

cells used for the simulations provide a better representation of the environment in which the crops are 313 

growing than in regions where the agricultural area covers a relatively limited fraction of the grid cell(48). 314 

The accuracy of simulated production is notably higher for maize than soybean and winter wheat in 315 

agricultural districts across the US, with the exception of California.  The geographic distribution of the 316 

coefficient of determination for soybean is relatively uniform, while correlations for winter wheat are highest 317 

in Idaho, California, and the Mississippi Valley, and lowest across southwestern Kansas and northern Texas 318 

(Fig. 1). 319 

 320 

Calculation of sustainable irrigation water use 321 

Our calculation of sustainable irrigation water use for each crop consisted of two steps. We first determined 322 

the sustainable irrigation fraction (SF), which is the fraction of the total water used for irrigation (ground and 323 

surface) that comes from surface water and sustainable groundwater extraction. We consider any extraction 324 

of water in excess of the aquifer sustainable yield to be unsustainable groundwater extraction. The SF was 325 

calculated at the agricultural district level using the following equation:   326 

𝑆𝐹 = 	
%&'	(&∗	*+∗	,-.

%&'(&
     (Eq. 1) 327 

Where SW is the district level surface water used for irrigation, GW is the groundwater used for irrigation, 328 

R is the aquifer recharge rate, E is the district level total groundwater extraction, and AqY is the assumed 329 

safe aquifer yield. Aquifer recharge rate estimates were from Reitz et al.(3). District level total groundwater 330 

extraction, surface water used for irrigation, and groundwater used for irrigation where obtained from the 331 

USGS report on estimated water use in the United States(1, 49). All variables were aggregated spatially to 332 

the district level on a yearly time step to be used in the model simulations. Since there is substantial 333 

uncertainty in future aquifer recharge rates, safe aquifer yield can only be approximated. Therefore, we 334 

evaluated the sensitivity of SF to safe aquifer yield values between 25% and 100%. 335 

 336 
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Second, we estimated sustainable irrigation water use (WUS) by crop and district using the following 337 

equation: 338 

𝑊𝑈% = 𝑊𝑈1 ∗ 𝑆𝐹    (Eq. 2) 339 

Where WUU is the modeled water use for each crop and district, calculated by running pDSSAT with an 340 

assumption of unlimited water supply for each 5 arc-minute grid cell containing any irrigated area by crop. 341 

Sustainable irrigation water use was then multiplied by the area of irrigated agriculture for that crop, to 342 

aggregate the grid level water use available for each crop to the district level. 343 

 344 

Estimation of the groundwater sustainability production losses 345 

Unsustainable production was calculated by multiplying model simulated yield with unlimited water supply 346 

by irrigated area in each grid cell, and aggregating irrigated production from all grid cells across each district. 347 

Sustainable production was obtained by limiting the irrigated crop production based on WUS for each safe 348 

aquifer yield to only the grid cells with the highest irrigation water use efficiency (IWUE). An example 349 

calculation of sustainable production is illustrated in Fig. S4 (SI Appendix). Irrigation water use efficiency 350 

for each grid was calculated with the following equation: 351 

𝐼𝑊𝑈𝐸 = .45.6
7

     (Eq. 3) 352 

Where Yi is irrigated yield, Yr is rainfed yield, and I is irrigation amount. DSSAT was run for each irrigated 353 

grid, rainfed and irrigated, to obtain Yi and Yr. The production loss is the difference between unsustainable 354 

and sustainable production. 355 

 356 
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Figures and Tables 464 

 465 
Fig. 1. Crop model evaluation. Coefficient of determination for simulated and observed county level 466 
production by agricultural district for maize (a), soybean (b) and winter wheat (c). Color shows correlation, 467 
and dot density shows the amount of production in each agricultural district. 468 

469 
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 470 
Fig. 2. Production loss from sustainable groundwater use.  Production losses across agricultural 471 
districts and years for maize (a), soybean (b), and winter wheat (c) with four different assumed safe 472 
aquifer yields.  Only combinations of districts, years, and safe aquifer yields with a difference between 473 
well-watered and sustainable production are shown. Across safe aquifer yields and years, 301, 270, and 474 
287 districts experienced production losses for maize, soybean, and wheat, respectively.  475 
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 476 
Fig. 3. Distribution of production loss from sustainable groundwater use.  Production losses by 477 
agricultural district for the most optimistic safe aquifer yield (100% recharge, left) and least optimistic safe 478 
aquifer yield (25% recharge, right) for maize (a,b), soybean (c,d), and wheat (e,f).  All dots show total 479 
irrigated production, brown dots show production lost due to sustainable groundwater use, and green dots 480 
show sustainable production remaining.  481 
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 482 
 483 
Fig. 4. Spatial distribution of sustainable irrigation fraction. Sustainable irrigation fraction (SF) at 484 
100% recharge (a), 75% recharge (b), 50% recharge (c), and 25% recharge (d). Blank districts have a SF 485 
of 1 or more. Values of 1 or more indicate no pressure from agricultural water use on aquifer 486 
sustainability, and values of 0 indicate that there is no water available for irrigation because extraction is 487 
equal to or higher than recharge. 488 
  489 
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Table 1. Nationally averaged irrigated production losses from sustainable groundwater use over the 490 
simulated period (2008 – 2012). Production from each simulated grid of maize (n = 47100), soybean (n = 491 
33902), and wheat (n = 43180) were aggregated for each sustainable aquifer yield scenario to estimate 492 
national production. 493 

 Production Loss 
Sustainable Aquifer Yield Maize Soybean Winter Wheat 

100% Recharge 20% 6% 25% 
75% Recharge 24% 9% 27% 
50% Recharge 31% 15% 30% 
25% Recharge 45% 37% 36% 

 494 
  495 
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 509 
Figure S1. Distribution of production losses from sustainable groundwater use.  Production losses 510 
by agricultural district for a safe aquifer yield of 100% of recharge, 75% of recharge, 50% of recharge, 511 
and 25% of recharge for maize (a), soybean (b), and wheat (c).  All dots show unsustainable production, 512 
red dots show unsustainable production lost at 100% recharge, orange dots show unsustainable 513 
production lost at 75% – 100% recharge, yellow dots show unsustainable production lost at 50% – 75% 514 
recharge, chartreuse dots show unsustainable production lost at 25% – 50% recharge, and green dots 515 
show unsustainable production remaining due to sustainable water use, by agricultural district.  516 
  517 
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 518 
 519 

Figure S2. Comparison of simulated and observed evapotranspiration (R2 = 0.68). Scatter plot of 520 
calibrated pDSSAT and ALEXI seasonal evapotranspiration for each grid cell with at least 50% of land 521 
covered with maize, soybean, and/or winter wheat.   522 
  523 
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 524 
Figure S3. Simulated and observed national production and yield.  Time series of irrigated and 525 
rainfed national production (left) and yield (right) for maize (a, b), soybean (c, d), and winter wheat (e, f). 526 
  527 
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 528 
Figure S4. Schematic of simulating sustainable production. Unsustainable water use (WUU) was calculated by 529 
aggregating the simulated water used from pDSSAT by district. This number was then multiplied by the sustainable 530 
fraction to obtain the sustainable water use (WUS) for each district. Agricultural production in each district was then 531 
restricted to the grid cells that could be supplied with WUS, prioritizing grid cells with the greatest water use 532 
efficiency (WUE). 533 
  534 
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Table S1. Data sources used to force pDSSAT, evaluate pDSSAT, and simulate sustainable agricultural 535 
production. 536 

Data Type Institution 
Spatial 
Resolution 

Temporal 
Resolution Reference 

Soil Yat-sen 
University 

30 
arcseconds 

NA Shangguan, Wei, et al. Journal 
of Advances in Modeling Earth 
Systems6.1 (2014): 249-263 

Weather NASA 1000 m 1 day Thornton, P. E., et al. (2017). 
Available at: 

https://daac.ornl.gov/cgi-
bin/dsviewer.pl?ds_id=1328 

Crop Specific 
Land Use 

USDA 30 m 1 year Boryan, C. et al. Geocarto Int. 
26, 341–358 (2011). 

Irrigation Land 
Use 

USGS 250 m 5 years Pervez, Md Shahriar, and 
Jesslyn F. Brown. Remote 

Sensing 2.10 (2010): 2388-2412. 

Aquifer Recharge 
Rate 

USGS 800 m 1 year Reitz, Meredith, et al. JAWRA 
Journal of the American Water 
Resources Association 53.4 

(2017): 961-983. 
Evapotranspiration USDA 

ARS 
2.7 arcminutes 

 
Anderson, Martha C., et al. 

Journal of Geophysical 
Research: Atmospheres 

112.D10 (2007). 
Initial Crop 
Parameters 

University 
of 

Chicago 

5 arc minute 1 year Glotter, Michael, and Joshua 
Elliott. Nature plants 3.1 (2017): 

16193. 

Yield and 
production 

USDA-
NASS 

County, 
National 

1 year Available at: 
https://quickstats.nass.usda.gov 

  537 
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Table S2. Crop model evaluation against USDA NASS observed data for maize, soybean, and winter 538 
wheat, and ALEXI for evapotranspiration. 539 
Variable CROP Mean Observed RMSE RRMSE Percent Bias R2 
Production (Gg 
per County) 

Maize 172   62   36%   1%   0.94   
Soybean 56   19   34%   0%   0.91   
Wheat 29   25   84%   2%   0.82   

Yield (kg ha-1)  Maize 7980 ±  685a 1828 ± 172 23% ± 3% -2% ± 5% 0.54 ± 0.04 
 Soybean 2624 ± 108 550 ± 38 21% ± 2% 5% ± 7% 0.52 ± 0.08 
 Wheat 3477 ± 157 1136 ± 52 33% ± 2% -5% ± 9% 0.37 ± 0.09 
Area (km2 per 
county) d 

Maize 186   52   28%   4%   0.95   
Soybean 199   40   20%   -1%   0.96   
Wheat 95   72   76%   15%   0.88   

ET (mm day-1)  Combined 3.56     0.40     11%     -3%     0.68     
a Standard deviation from the mean from leave one out cross validation analysis. 540 
 541 
 542 


